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Abstract: Accurate and timely estimation of grass yield is crucial for understanding the ecological
conditions of grasslands in the Mongolian Plateau (MP). In this study, a new artificial neural network
(ANN) model was selected for grassland yield inversion after comparison with multiple linear
regression, K-nearest neighbor, and random forest models. The ANN performed better than the other
machine learning models. Simultaneously, we conducted an analysis to examine the spatial and
temporal characteristics and trends of grass yield in the MP from 2000 to 2020. Grassland productivity
decreased from north to south. Additionally, 92.64% of the grasslands exhibited an increasing trend,
whereas 7.35% exhibited a decreasing trend. Grassland degradation areas were primarily located
in Inner Mongolia and the central Gobi region of Mongolia. Grassland productivity was positively
correlated with land surface temperature and precipitation, although the latter was less sensitive than
the former in certain areas. These findings indicate that ANN model-based grass yield estimation is
an effective method for grassland productivity evaluation in the MP and can be used in a larger area,
such as the Eurasian Steppe.

Keywords: artificial neural network; machine learning; grass yield; grassland degradation;
Mongolian Plateau

1. Introduction

As an important part of terrestrial ecosystems, grasslands cover nearly 50% of the
land surface. It is the largest land resource in the world and has important ecological and
economic value for human beings. Grasslands are the primary source and production
base for the development of animal husbandry and play an indispensable role in carbon
sequestration and oxygen release, wind and sand control, maintenance of ecological balance,
and water conservation [1]. However, grassland ecosystems have simple structures and
poor stability. In recent years, the combination of climate change and human activities
has exerted substantial pressure on grassland degradation and desertification. This has
resulted in soil erosion, sand and dust storms, and other natural disasters, posing severe
threats to the ecological balance and the safety of human life and property [2,3]. Grass yield,
as an important indicator of grassland productivity and the basis of livestock management,
is crucial to grassland resource management and sustainable development [4,5].

With the launch of satellites with different temporal, spatial, and spectral resolutions,
various high-resolution remote sensing image data can be acquired and processed—this
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development has laid the foundation for accurate and comprehensive research on estimat-
ing productivity and grass yield [6,7]. The main methods for estimating grass yield based
on remote sensing are the vegetation index method [8], the process model method [9], and
the machine learning method [10].

The vegetation index method is widely used for estimating grass production, where
the normalized vegetation index (NDVI), enhanced vegetation index (EVI), and relative
vegetation index (RVI) are considered good indicators of vegetation growth [11–13]. Yang
et al. [14] used vegetation indices, such as NDVI and EVI, and ground sample data to
construct a model suitable for estimating grass production in the mixed agro-pastoral
zone in northern China and reported that the NDVI indices fit the grass yield samples
with the highest accuracy. Liu et al. [15] estimated the yield of grasslands in Qinghai
Province, China, based on the Savitzky–Golay and asymmetric Gaussian models using
NDVI time-series and ground-truth data. The vegetation index modeling is simple and
easy to calculate; however, its robustness is poor. The primary factor contributing to this
phenomenon is the model’s construction, which is customized to accommodate the unique
environmental and geographic conditions, along with the seasonality specific to the study
area. However, this customization makes the model less portable and more susceptible to
various factors, such as vegetation types and climatic conditions. Furthermore, the model
necessitates extensive ground-truth data to be incorporated into its design. The portability
and robustness of grassland herbage yield models are important for large-scale monitoring
and accuracy improvement of herbage production estimation methods [16,17].

The process model approach is based on the ecological characteristics of grassland
growth and environmental factors and can estimate grass yield accurately [18,19]. A large
number of process models have been constructed, such as the global productivity efficiency
model [20], vegetation photosynthesis model, and light energy utilization model, the most
commonly used of which is the Carnegie-Ames-Stanford approach (CASA) model in the
light energy utilization model [21,22]. Zhang et al. [23] used the CASA model to estimate
grassland and grass production in the Sanjiangyuan area of the Tibetan Plateau based on
NDVI, meteorological data, and land cover data. Bao et al. [24] constructed a grassland
productivity model suitable for the Mongolian Plateau (MP) by introducing the surface
water index instead of the water stress coefficient into the CASA model and simplifying
the model structure. Compared with the vegetation index model, the process model fully
accounts for grassland types and meteorological factors and can be adapted to different
grassland environments with higher accuracy and portability. However, the model is
highly complex and computationally intensive, and there are certain shortcomings in the
parameter determination and solution process.

Machine learning is a data-driven approach that relies on computers to simulate
human learning behavior and mine patterns and knowledge from large data samples to
predict future outcomes or trends. Therefore, compared with traditional model algorithms,
machine learning algorithms are better at integrating multiple factors and learning highly
complex nonlinear mappings, thus significantly improving the simulation accuracy of
phenomena and processes [25]. Currently, the most commonly used machine learning
algorithms are random forest (RF) [26,27], support vector machine [28], K-nearest neighbor
method (KNN), and adaptive boosting. Tang et al. [29] used six machine learning algo-
rithms to evaluate the aboveground biomass of Chinese forests based on LiDAR data and
22 environmental features. They reported that the NDVI, annual precipitation, and the
temperature had important effects. Liu et al. [30] constructed a grassland biomass esti-
mation model based on various algorithms, such as RF, for Southwest China. The results
showed that precipitation and temperature were significantly correlated with the biomass.
Machine learning also has drawbacks, such as weak generalization of nonstationary data
and overfitting problems [31,32].

Xie et al. [33] compared the accuracy of a multiple linear regression model and a neural
network model in estimating grass production. They reported that the neural network model
provided a better estimate of grass production. Yang et al. [34] compared a neural network
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model with various machine learning models and showed that the accuracy of the neural
network model was significantly higher than that of the other models.

Accurate monitoring of grassland productivity in the MP is necessary to ensure the
sustainable development of animal husbandry. This is important for the ecological security of the
MP [35,36]. Although previous researchers have successfully researched aboveground biomass
in various regions, there is a lack of long-term series analyses to estimate grass production
in the MP [37]. This study combined site data, vegetation index, land surface temperature,
and precipitation to accurately estimate grass production in the MP. The main objectives were
(1) to compare the accuracy of multiple model algorithms and construct an optimal model for
estimating grass yield in the MP, (2) to simulate and analyze the spatial and temporal trends in
grassland productivity in the MP from 2000 to 2020, and (3) to analyze the influence of climatic
factors on grassland productivity in the MP.

2. Materials and Methods
2.1. Study Area

The MP is an inland plateau in East Asia with a homogeneous ecosystem structure
and a fragile ecological environment. It is a typical arid and semi-arid region, located
37–53◦ north latitude and 84–126◦ east longitude [38,39]. Its coverage area mainly includes
the entire territory of Mongolia, the Inner Mongolia Autonomous Region of China (now
referred to as Inner Mongolia), and part of the Tuva Republic of Russia, with a total area of
approximately 2.75 × 106 km2. It is shown in Figure 1. The MP extends from the Sayanling
and Kent Ranges in the north to the Yin Mountains in the south, the Altay Mountains and
Hanggai Ule Mountains in the west, and the Daxing’anling in the east. Its overall elevation
ranges from 400 to 2500 m, with an average elevation of approximately 1500 m. The terrain
is high in the west and low in the east. The MP has a temperate continental climate with
an average annual precipitation of 100–400 mm, mainly in the summer months of June
to August, with precipitation gradually decreasing from southeast to northwest owing
to the influence of water vapor from the Arctic and Pacific Oceans [40]. The trends in
temperature distribution and precipitation are essentially the same: scorching summers,
large temperature differences between the day and night, long and severe winters, and
frequent freezing and snowstorms [41]. Affected by climatic conditions, the vegetation
cover is mainly woodland and meadow grassland in the north and desert grassland and
bare land in the south.
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2.2. Data Source and Preprocessing
2.2.1. Remote Sensing Data

The remote sensing data used in this study covers the period from 2000 to 2020, as listed
in Table 1. NDVI and EVI data were obtained from the MOD13Q1 dataset provided by Google
Earth (https://code.earthengine.google.com/; hereafter referred to as GEE; accessed on 25
October 2022) with a temporal resolution of 16 d. The maximum value synthesis method
involves the synthesis of an image by superimposing images from different periods and
obtaining the maximum value of the raster cells. Since 2000, the maximum synthesis method
has been used to generate the NDVI and EVI data for the MP in summer (June–August). This
method can attenuate sudden drops in data caused by atmospheric noise, such as clouds and
aerosols [42]. The soil-adjusted vegetation index was obtained from the MOD09A1 dataset
provided by the GEE platform band calculations [43] with a temporal resolution of 8 d. Land
surface temperature (LST) data with a temporal resolution of eight days were obtained from
the MOD11A2 dataset provided by the GEE platform with a temporal resolution of 8 d. The
data were processed to generate daily average surface temperature data (unit: ◦C) for the MP in
summer. Precipitation data were obtained from the PERSIANN-CDR dataset provided by the
National Oceanic and Atmospheric Administration (https://www.ncei.noaa.gov/; accessed
on 6 November 2022) with spatial and temporal resolutions of 0.25◦ and 1 d, respectively. They
were processed to obtain the summed summer precipitation data for the MP. This dataset was
extracted by the PERSIANN algorithm using GridSat-B1 infrared satellite data based on a
neural network algorithm with high data accuracy and a good application basis in arid areas.
All remote sensing data processing in this study was performed using GEE, and all raster data
projections were made using the WGS84 projection.

Table 1. Remote Sensing Data.

Abbreviation Resolution Temporal Resolution Data Source

NDVI 500 m 16 d MOD13Q1
EVI 500 m 16 d MOD13Q1

XSAVI 500 m 8 d MOD09A1 Band
Calculate

LST 1000 m 8 d MOD11A2
Precipitation 0.25◦ 1 d PERSIANN-CDR

EVI: enhanced vegetation index; LST: land surface temperature; NDVI: normalized vegetation index; XSAVI:
summer soil-adjusted vegetation green index.

2.2.2. Land Cover Data

Land cover data were obtained using GLC_FCS30 (https://data.casearth.cn/sdo/
detail/5fbc7904819aec1ea2dd7061; accessed on 19 November 2022), a global 30 m land
cover fine classification product published by the Institute of Air and Space Information
Innovation of the Chinese Academy of Sciences. The dataset covers the global land area,
excluding Antarctica, and contains 29 land cover types, producing land cover products
from 1985 to 2020 on a 5-year cycle. Projection transformation, cropping, and resampling
tools in ArcGIS were used to generate land cover data for the MP from 2000 to 2020 with a
5-year cycle. The major percentages were as follows: agricultural land, 2.3%; forest, 15.9%;
grassland, 46.1%; shrubs, 2.4%; wetland, 0.3%; bare land, 32.4%; and water bodies, 0.7%,
with each land cover type remaining essentially constant (<1%) during the study period
(2000–2020).

2.2.3. Grass Yield Sample Data

Grass yield sample data were collected by our group during the vegetation-growing
seasons (June–August) in 2006, 2013, 2018, 2019, and 2020. The sampling strategy and principle
were to select areas with uniform vegetation cover that can represent the condition of the
grassland as a sample plot, and in order to ensure a continuous distribution of sample plots
within a representative area, the distance between sample plots was approximately 40 km.

https://code.earthengine.google.com/
https://www.ncei.noaa.gov/
https://data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061
https://data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061
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Due to the inaccessibility of the western part of the Mongolian Plateau, most of the sampling
plots are currently concentrated in the northeastern part of the region. We randomly selected
three 0.5 m× 0.5 m sample squares within a 50 m× 50 m sample plot with uniform vegetation
type. The average of three sample squares was used to represent the herbaceous yield of the
sample plot. The sample sites were selected to represent vegetation growth in the region. After
data screening and processing, 237 grass yield sample-point data points were obtained. The
sampling point coordinate information was imported into ArcGIS10.6 to generate a sampling
point vector file, the distribution of which is shown in Figure 2.
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2.3. Methods

This study comprises the following technical steps: remote sensing image acquisition,
training dataset production, model training, prediction, and evaluation. The process is shown
in Figure 3. First, images were acquired based on the above data sources, and the images
were preprocessed based on GEE to produce the training dataset required for the model. Four
models, MLR, RF, KNN, and ANN, were compared, and the best-performing herbaceous
yield estimation model was applied to the MP for herbaceous yield estimation.
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2.3.1. Models Parameter Selection

In previous studies, vegetation indices performed better in most cases when fitting
models to estimate grass yields [44,45]. In contrast, meteorological factors, such as surface
temperature and precipitation, were significantly and positively correlated with actual primary
productivity in the MP [25,46]. Therefore, this study selected three variables—vegetation
index, land surface temperature, and precipitation—as the input parameters of the four
models to estimate grass yield in the MP.

For the initial three models, 70% of the sample point data is allocated for model
construction, while the remaining 30% is used for accuracy verification. In contrast, the
ANN model is assessed using the K-fold cross-validation method.

2.3.2. Models Construction
MLR Model

The multiple linear regression model minimizes the sum of the squares of the residuals
between the predicted and measured values using least squares to determine the optimal
parameters [12]. The model was very sensitive to outliers, and the model prediction results
were highly susceptible to data outliers. The model can explain the linear relationship
between the independent and dependent variables to the maximum extent.

KNN Model

The KNN is a prediction model based on the mean value of the KNN data points [47].
The model does not require significant parameter tuning to achieve a good performance.
However, the model has a low generalization ability, is more noise sensitive, and yields
good results when dealing with datasets with few features.

RF Model

The RF model is a machine learning model based on the bagging algorithm, which
divides the result into different sample datasets by building different decision trees, and
the final result is selected by counting the prediction results of each tree using the voting
method. Figure 4 illustrates the schematic of the RF model [48]. The model can handle
multifeatured datasets without feature selection but produces overfitting on noisy datasets.
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ANN Model

The deep learning framework used in this study was TensorFlow (GPU version),
the model optimizer was selected as RMSprop, and the initial learning rate was set to
0.001. The ANN model schematic is shown in Figure 5 [50]. The number of neurons and
hidden layers, the most important parameters in the ANN model, were tested repeatedly
and determined to be 18 neurons and 3 hidden layers. The number of neurons from the
input to the output layer was as follows (3, 8, 4, 2, 1). The activation functions chosen for
each layer of the network were ordinary RELU functions, and the input variables were
normalized first. The gradient descent algorithm was selected as the network optimization
algorithm. In addition, training would be stopped when the model fit was optimal to
avoid overfitting. Because training artificial neural network models requires many samples,
this study adopted a k-fold cross-validation (K = 10) approach to solve the problems of
insufficient data volume and parameter tuning. In the k-fold cross-validation, we divided
the dataset into k copies, used one of them and the remaining k − 1 copies as the validation
and training sets, respectively, and then repeated the cross-validation process 10 times,
using each k-fold dataset as the validation/test data only once.
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2.3.3. Accuracy Evaluation

To verify the accuracy of different remote sensing models for herbaceous production
estimation, root mean square error (RMSE) and coefficient of determination (R2) are used
to measure model accuracy in this paper. The calculation equations are as follows:

RMSE =

√√√√√ n
∑

i=1
(yi − fi)

2

n
(1)

where n is the number of measurements, yi and fi are the measured and model-predicted
values, respectively. In this study, the smaller the RMSE, the higher the accuracy of the model.

R2 = 1−
∑
i
(yi − fi)

2

∑
i
(yi − ŷ)2 (2)

where yi and fi represent the measured and model-predicted values, respectively, and ŷ
represents the average of the measured values. R2 is the correlation coefficient between the
predicted and measured values, and the closer R2 is to 1, the higher the model accuracy.
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2.3.4. Trend Analysis

This study used the Theil–Sen median slope estimation method and Mann–Kendall
trend analysis to determine the significance of grass yield trends in the MP over the last
20 years. The evaluation table of grass yield trend was displayed in Table 2. The Theil–Sen
median method is a robust nonparametric statistical trend calculation method that fits the
trend by taking the median of the slope of any two points in a time series. This method
is computationally efficient, independent of extreme values, suitable for long-time series
analysis, and is widely used in meteorology and seasonal environmental data analysis [52].
The formula is as follows:

β = median(
xj − xk

j− k
), j = 1, 2, . . . , n; k = 1, 2, . . . , j− 1 (3)

where β is the slope between two points in the time series; xj and xk are the data values
corresponding to time points j and k (j > k) in the time series, respectively.

Table 2. Evaluation table of the grass yield trend (β is Theil–Sen median slope, Z is normalized test
statistic).

β |Z| Trend

β > 0 |Z| > 1.96 Significantly increasing
β > 0 |Z| < 1.96 Increasing
β < 0 |Z| > 1.96 Significantly decreasing
β < 0 |Z| < 1.96 Decreasing

The Mann–Kendall trend analysis method is a nonparametric time-series trend test
with the advantage that it does not require data to obey a normal distribution and is not
affected by missing data and extreme values [53]. For time-series data Xt = x1, x2,. . ., xn,
the test statistic S is calculated as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xi − xj), sgn(xi − xj) =


+1
0
−1

,
xi − xj > 0
xi − xj = 0
xi − xj < 0

(4)

When n > 10, the variance of its test statistic S is:

Var(S) =
n(n− 1)(2n + 5)

18
(5)

Z =


S√

Var(S)
0

S+1√
Var(S)

(S > 0)
(S = 0)

(S < 0)

(6)

where n represents the number of data points in the series, and xi and xj are the data values
corresponding to time points i and j (j > i) in the time series, respectively.

3. Results
3.1. Multi-Factor Models Comparison

For accuracy, the four herbaceous yield estimation models used were the ANN, RF,
KNN, and MLR. It is shown in Figure 6. The accuracy of the ANN model (R2 = 0.78,
RMSE= 48.7 g/m2) and RF model (R2 = 0.72, RMSE = 55.28 g/m2) was significantly higher
than that of the other two models, and both of them could be used in grass yield estimation
in the MP. While the KNN model accuracy followed, the MLR model could only characterize
40% of the variance. Therefore, we used the ANN model to estimate the grass yield in the
MP between 2000 and 2020.
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3.2. Single-factor Model Comparison

The purpose of building univariate models is to select the most effective vegetation
index for grass production inversion (the process of obtaining ground-based grass yield
from remote sensing data) and to optimize the models’ performance. The number of sample
points used for all models was 237. It is shown in Table 3. A significant positive correlation
was observed between grass yield and the vegetation indexes in the MP, indicating the
feasibility of using a single vegetation index to monitor grass yield in the region. However,
the established relationship between grass yield and vegetation indices can also greatly
impact the model’s estimation accuracy. The fitting accuracy of one of the linear regression
models was significantly lower than that of the other three types of nonlinear models.
Nevertheless, the linear regression model reflected the correlation between the vegetation
index and grass yield more intuitively. Similarly, different vegetation indices reflected
different effects on grass production in different regions. NDVI had the highest correlation
coefficient with grass yield, indicating that NDVI could better reflect changes in grass yield
than the other indices in the MP. The results show that the NDVI power function model is
a simple and effective method for monitoring grass yields. Although the performance of
the ANN model is better than that of the conventional model, the selected variables and
the model constructed in this study are applicable only to the MP.

Table 3. Fitting models among vegetation index and grass yield.

Index Model Formula R2 RMSE

NDVI

Linear y = 0.0012x + 0.4739 0.328 108.7
Exponential y = 0.3568e0.0021x 0.385 94.7

Power y = 0.1287x0.3159 0.416 84.5
Logarithmic y = 0.1094ln(x) + 0.1357 0.404 90.6
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Table 3. Cont.

Index Model Formula R2 RMSE

EVI

Linear y = 0.0009x + 0.5123 0.288 126.9
Exponential y = 0.3075e0.0018x 0.317 116.6

Power y = 0.1139x0.3591 0.335 104.9
Logarithmic y = 0.1762ln(x) − 0.1267 0.327 112.6

XSAVI

Linear y = 0.001x + 0.3862 0.275 134.8
Exponential y = 0.4267e0.0024x 0.332 106.6

Power y = 0.0965x0.3875 0.368 99.9
Logarithmic y = 0.1368ln(x) + 0.0726 0.382 95.3

NDVI: normalized vegetation index; EVI: enhanced vegetation index; XSAVI: summer soil-adjusted vegetation
green index.

3.3. Spatial and Temporal Variability of Overall Grass Production in the MP

We masked the forested areas because of errors in the estimation of grass yield in
the forested areas caused by the cover of the forest canopy over ground grass (Figure 7).
Clear spatial heterogeneity was observed in grass yield in the MP, and the distribution of
grass yield gradually increased from south to north (Figure A1). The high grass-production
areas are mainly located in the southern part of Inner Mongolia and the Selengar River
Basin in Mongolia, two areas with flat terrain, sufficient annual precipitation, dense small
rivers throughout the region, rich in hydro-energy resources, and a natural environment
suitable for grass growth. In contrast, the low-grass production area is concentrated in
southwestern Mongolia, which is affected by an arid climate, low vegetation cover, short
growing seasons, mostly bare land and shrubs, and easy soil moisture loss, resulting in the
lowest grass productivity. Most grasslands in the MP produced 250–350 g/m2 of grass.
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Overall, grassland productivity in the MP has increased. It is shown in Figure 8. From
2000 to 2020, the average annual grass yield in the MP varied between 270.1 and 304.3 g/m2,
with the lowest value of 270.1 g/m2 reached in the study area in 2001 and the peak of
304.3 g/m2 in 2018. The fitted curve shows that the average annual grass production in the
MP increased at a rate of 1 g/m2 per year, indicating that the grassland ecology of the MP
gradually recovered. Earlier research found that grassland productivity gradually increased
at high latitudes and altitudes in the Northern Hemisphere due to global warming and the
greenhouse effect, validating our findings [54]. However, in 2001, 2007, and 2009, there
was a significant decrease in the average annual grass production, which was found to be
due to a major disaster in the MP, resulting in a sudden decrease in grass yield. In 2001,
a major snowstorm in the MP caused Mongolia to lose nearly 10% of its gross domestic
product and caused severe damage to its agriculture and livestock industries. In 2007
and 2009, spring precipitation in the northeastern region of the Mongolian Plateau was
50–80% lower than that in the same period. The temperature reached a maximum for the
same period, and high temperatures and low rainfall directly led to a sudden decrease
in grassland productivity. In general, the ecological structure of the MP is simple and
vulnerable to extreme climatic conditions. However, the overall ecological environment is
improving annually.
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3.4. Trend Analysis of Grass Yield

Over 90% of the MP showed an increasing trend in grass production from 2000 to
2020, with nearly 40% of the areas showing a significant increase. It is shown in Figure 9.
These areas are primarily located in northern and southeastern Inner Mongolia. Approxi-
mately 10% of the areas showed a decreasing trend in grass production, mainly in western
Mongolia, the central Tuva Republic, and central Inner Mongolia; 1.43% of the significantly
decreasing areas were concentrated in Inner and central Mongolia near the Gobi Steppe.
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It is shown in Table 4. By region, the three provinces of Mongolia—Kent, Dornod, and
Tuv—showed an increasing trend in 99% grassland productivity. In contrast, grassland
productivity in the Tuv Province significantly increased by more than 90%. Tuva Republic,
Khuvsgul Province, and Inner Mongolia had the largest shares of declining grass production
areas. Although the area of grassland decline in the Tuva Republic and Khuvsgul Province
was extensive (approximately 15%), its significant decline was less than 1%, which is far
less than the 1.44% significant decline in grassland production in Inner Mongolia.

Table 4. Trends in grass yield in various regions of the Mongolian Plateau.

Region Obvious Increase Slight Increase Slight Decrease Obvious Decrease

Inner Mongolia 45.56% 46.92% 6.08% 1.44%
Tuva 64.47% 18.8% 15.92% 0.81%

Selangor 47.22% 47.05% 5.52% 0.21%
Sukhbaatar 58.4% 37.86% 2.89% 0.85%
Khuvsgul 56.77% 28.14% 14.24% 0.86%

Kent 51.89% 47.26% 0.64% 0.21%
Arhangay 46.17% 49.75% 3.99% 0.08%
Dornod 57.2% 41.56% 1.23% 0.01%

Tuv 90.08% 9.55% 0.34% 0.03%
Burgan 53.53% 39.98% 6.24% 0.25%

Dzavhan 68.73% 27.19% 3.16% 0.92%

4. Discussion
4.1. Model Variables Analysis
4.1.1. Sensitivity Analysis of Model Variables

Because deep learning models are usually considered black box models, and it is
impossible to estimate the importance of each feature for model prediction, we analyzed
the model using the mean impact value method in the sensitivity analysis method based
on the perturbation of the input variables. The mean impact value method increases each
variable feature by 10% on the training sample into a simulation sample after the network
training is terminated. The difference between the fitted result of the simulation sample and
the original prediction is considered as the value of the change in the effect of the variable
on the output, thus determining the importance of the effect of the respective variable on
the model output.
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The results are shown in Figure 10. Overall, the average percentage changes in
the output resulting from the increased perturbations of the three variables (NDVI, LST,
precipitation) were 4.04%, 2.34%, and 2.09%. The greatest mean perturbation change of
4.04% was observed for NDVI and the lowest mean perturbation change of 2.09% was
observed for precipitation. The results show that the importance of the three variables to the
model output, in descending order, was NDVI, LST, and precipitation. By analyzing each
variable independently, both the NDVI and LST variables remained highly sensitive to the
output results in the high-value region, whereas the low-value region also increased with
perturbation. Areas with high NDVI were concentrated in northeastern Inner Mongolia.
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of the model to NDVI; (b) sensitivity analysis of the model to LST; (c) sensitivity analysis of the model
to precipitation. NDVI: normalized vegetation index; LST: land surface temperature.

In contrast, areas with high LST were concentrated in central Inner Mongolia. These
areas had the highest percentage of added value as NDVI and LST perturbations increased.
This indicates that grass production is more sensitive to the two variables, NDVI and LST,
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or that the two variables are significantly and positively correlated with grass productivity
in the MP. Regarding precipitation, the perturbation variation was smaller in regions with
abundant precipitation in the northern part of the MP. The perturbation variation was larger
in water-scarce regions in central and western Mongolia. This indicates that the sensitivity
to precipitation is low in some areas of the MP, and precipitation is not significantly and
positively correlated with grass yield.

4.1.2. Permutation Feature Importance

Permutation feature importance (PFI) is an algorithm that can directly calculate the
importance of input features. To assess the importance of features, this method confuses
the data arrangement of a specific feature while keeping the remaining features unchanged.
Subsequently, it calculates the difference (the result of subtraction) between the prediction
results before and after the confusion to evaluate the feature’s importance. The three
features (NDVI, LST, precipitation) were randomly confused ten times, and the average of
the results was calculated. Figure 11 shows the result of LST being randomly confused once.
The feature importance, from the highest to the lowest, was LST at 0.042, NDVI at 0.028,
and precipitation at 0.014. Consequently, our findings indicate that LST exhibits greater
importance in the ANN model compared with NDVI and precipitation. LST emerges as
a significant factor that strongly influences the prediction results of the model. The MIV
method reversed the importance of NDVI and LST, and the phenomenon could potentially
be attributed to its heightened sensitivity to data noise, which impacted the interpretability
of the model.
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4.2. Comparison with Other Studies

This study used an ANN model to quantify grass production in the MP over the
last 20 years with an accuracy comparable to that of net primary productivity (NPP) or
aboveground biomass (AGB)-related studies. Bao et al. estimated the average NPP of
228.2 gC/m2 based on the CASA model for the growing season in Mongolia during 1982–
2011 and found that the sensitivity of vegetation growth to precipitation decreased in areas
with sufficient precipitation in northern Mongolia, which is consistent with our study [55].
John et al. used a regression tree model to estimate AGB in the MP, and the validation results
showed that its R2 and RMSE were 0.73 and 76.9 g/m2, respectively [51]. Similarly, the poor
sensitivity of grass growth to temperature in the Inner Mongolia region supports previous
studies in the Inner Mongolia region (Su et al.) [39]. In line with our prior experimental
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findings indicating a rising trend in grassland productivity, the study conducted by Yan
et al. examined the carrying capacity of Mongolian grasslands over the period from 2000 to
2020. Their research corroborated our results, revealing that approximately 98.5% of the
Mongolian area exhibited a significant increase in AGB [56].

In addition, we analyzed the reasons for the performance of the four models. The RF
model may overfit noisy sample points during the training process, resulting in a lower
accuracy rate than that of the ANN model. In contrast, the KNN model can hardly learn
the meteorology factor characteristics from the data, and the MLR cannot fit the nonlinear
relationship between grass production and variables, resulting in a lower accuracy than
the ANN and RF models, which have better learning ability. A study in Xilingole, Inner
Mongolia, of grassland AGB compared an ANN model (R2 = 0.81, RMSE = 60) to an MLR
model (R2 = 0.59, RMSE = 74). It was considered that the ANN model was more applicable
than that of the MLR model to observing biomass [33]. In a separate study focusing on
AGB estimation, Gao et al. evaluated multiple modeling approaches, including RF (RMSE
= 26.8), KNN (RMSE = 28), ANN (RMSE = 25.5), LR (RMSE = 27.4), and support vector
regression (SVR) (RMSE = 25.8) [57]. The authors found that among these approaches,
the ANN model exhibited superior performance and was identified as the most effective
method for enhancing AGB estimation.

4.3. Model Advantages and Limitations

The ANN model possesses the capability to autonomously select model input data and
learn input features, rendering it highly adaptable and versatile. Moreover, by adjusting
hyperparameters and network structure, the ANN model can construct the most suitable
models tailored to different regions and features. This flexibility enhances its applicability
and effectiveness across various scenarios. Simultaneously, the model prediction accuracy
can be continuously improved by increasing the number of training samples. However,
this model has certain limitations. First, the learning process of the ANN model is not
controllable. Although we performed a variable sensitivity analysis on the model to obtain
a general idea of the effect of the model inputs on the prediction results, the sum of
the perturbation changes in the three variables was not equal to the perturbation itself,
indicating that nonlinear input perturbation effects among them were not observable.
Second, the learning process of the model demands a greater number of training samples,
and in the less-sampled regions, particularly in the western part of the MP, the error tends
to be larger.

5. Conclusions

Faced with the challenges of long-term grassland yield monitoring in the MP, we
compared four different models based on three variables (NDVI, LST, precipitation) to
estimate grass yield and quantitatively assessed changes in grass productivity from 2000
to 2020 based on the optimal model. The following conclusions were obtained: (1) The
estimation accuracy of the ANN model was higher than that of the KNN, MLR, RF, and
vegetation index single-factor models (R2 = 0.78, RMSE = 48.7 g/m2). (2) Grassland pro-
ductivity in the MP showed significant spatial heterogeneity and decreased from northeast
to southwest. During the study period, grassland productivity increased in 90% of the
Mongolian Plateau. (3) The overall climate of the Mongolian Plateau was warm and hu-
mid, and grass production was positively correlated with NDVI, LST, and precipitation.
However, the sensitivity of grass production to the NDVI and LST was high. LST was the
most important factor affecting grassland growth in the MP. This study also has limitations
for not well-distributed samples. With more samples collected in the full coverage of the
MP, this estimation results accuracy can be increased in the near future.
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